设 `f(x)` 有二阶导数. 证明:
`lim_(h to 0) (f(x+h) + f(x-h) - 2f(x)) / h^2 = f''(x)`.
使用洛必达法则,
`lim_(h to 0) (f(x+h) + f(x-h) - 2f(x))/h^2`
`= lim_(h to 0) (f'(x+h) - f'(x-h))/(2h)`
`= lim_(h to 0) (f'(x+h) - f'(x))/(2h)`
`+ lim_(h to 0) (f'(x) - f'(x-h))/(2h)`
`= 1/2 f''(x) + 1/2 f''(x)`.
注意二阶导数不存在时, 上述极限仍有可能存在. 如 `f(x) = |x|` 在 `x = 0` 处.