`B = (E nn A)^C nn (E^C uu A)`
`= (E^C uu A^C) nn (E^C uu A)`
`= (E^C nn E^C) uu (E^C nn A) uu (A^C nn E^C) uu (A^C nn A)`
`= E^C`.
这等价于 `B^C = E`.
记左边的集合为 `S`, 右边的集合为 `T`. 则
`S = {x | (EE n_1 in NN, x in A_(n_1)) and
(EE n_2 in NN, x in B_(n_2))},`
`T = {x | EE n in NN, x in A_n nn B_n}`.
显然 `T sube S`. 不妨设 `n_1 le n_2`, 则 `A_(n_1) sube A_(n_2)`,
此时
`S sube {x | EE n_2 in NN, x in A_(n_2) and x in B_(n_2)}=T`.
故 `S = T`.
只需证: 对任意 `t in RR`, `f(x) le t` 的充要条件是 `AA k in NN, EE m in NN, AA n ge m, f_n(x) lt t + 1/k`. 由 `lim_(n to oo) f_n(x) = f(x)` 知, `AA epsi gt 0`, `EE m in NN`, `AA n ge m`, `|f_n(x) - f(x)| lt epsi`.
(1) 必要性. 对 `AA k in NN`, 取 `epsi = 1//k`, 由上式知 `EE m in NN`, `AA n ge m`, `f_n(x) lt f(x) + epsi le t + 1//k`.
(2) 充分性. 若 `f(x) gt t`, 则可取 `epsi` 和 `1//k` 充分小, 使 `f(x) ge t + epsi + 1//k`, 但由条件知道, `EE m_1, m_2 in NN`, `AA n ge max(m_1, m_2)`, `f(x) lt f_n(x) + epsi lt t + 1//k + epsi`, 得到矛盾.
只需证: `x = a` 的充要条件是 `AA k in NN`, `EE m in NN`, `AA n ge m`, `|x - a_n| lt 1/k`. 由数列极限的唯一性, 这是显然的.