多元函数的极限

    设 `alpha, beta ge 0`, `alpha + beta gt 1`, `m, n` 为正整数, 则 `x^(n alpha) y^(m beta) = o(sqrt(x^(2n)+y^(2m)))`, `quad (x,y) to (0,0)`. 特别取 `m = n = 1` 和 `m = n = 2` 得 `x^alpha y^beta = o(sqrt(x^2+y^2))`, `quad x^alpha y^beta = o(root 4(x^4+y^4))`.
    由不等式 `|x| le root(2n)(x^(2n)+y^(2m))`, `|y| le root(2m)(x^(2n)+y^(2m))` 有 `(|x|^(n alpha) |y|^(m beta))/(sqrt(x^(2n)+y^(2m)))` `le (x^(2n)+y^(2m))^(alpha/2 + beta/2 - 1/2)`. 记 `r = sqrt(x^2+y^2)`, 则 `max{|x|, |y|} le r le 1` 时有 `x^(2n)+y^(2m) le x^2+y^2 = r^2`, 从而上式小于等于 `r^(alpha+beta-1)`. 令 `r to 0` 即得结论.
  1. `x y`, `x^2`, `x^(1+p)` (`p gt 0`) 等函数皆是 `sqrt(x^2+y^2)` 的高阶无穷小.
  2. `x y = (x^(3/4) y^(3/4))^(4/3) = o(root 4(x^4+y^4))^(4/3)` `= o(root 3(x^4+y^4))`.