内积定义为具有正定性的对称双线性函数:
设 `X, Y in RR^n`, 则 `(:X, Y:) = sum_(i=1)^n x_i y_i in RR`.
设 `X in RR^3`, 则 `X = (:i, X:)i + (:j, X:)j + (:k, X:)k`.
称 `alpha, beta` 正交 (或垂直), 如果 `(:alpha, beta:) = 0`.
设 `X in RR^n`, 则 `|X| = sqrt(sum_(i=1)^n x_i^2)`.
外积是一向量, 模等于两向量所夹的平行四边形的面积, 方向满足右手定则.
设 `X, Y in RR^3`, 则 `X ^^ Y = | i, j, k; x_1, x_2, x_3; y_1, y_2, y_3; | in RR^3`.
`alpha, beta` 线性相关 (共线) 当且仅当 `alpha ^^ beta = bb 0`.
`(alpha, beta, gamma) = (beta, gamma, alpha) = (gamma, alpha, beta)`
设 `X, Y, Z in RR^3`, 则 `(X, Y, Z) = (:| i, j, k; x_1, x_2, x_3; y_1, y_2, y_3; |, Z:) = | x_1, x_2, x_3; y_1, y_2, y_3; z_1, z_2, z_3; |.`
`alpha, beta, gamma` 线性相关 (共面) 当且仅当 `(alpha, beta, gamma) = 0`.
Lagrange 恒等式的证明: 左 = `(:beta ^^ (gamma ^^ delta), alpha:) = (:|gamma, delta; (:beta, gamma:), (:beta, delta:)|, alpha:)` = 右. 由 Lagrange 恒等式推出外积公式: ` X ^^ Y = sum (:X ^^ Y, epsi_i:) epsi_i = sum(:X ^^ Y, epsi_j ^^ epsi_k:) epsi_i` `= sum | (:X, epsi_j:), (:X, epsi_k:); (:Y, epsi_j:), (:Y, epsi_k:)| epsi_i = | i, j, k; (:X, i:), (:X, j:), (:X, k:); (:Y, i:), (:Y, j:), (:Y, k:)|`.
定义 `alpha(t) = (a_1(t), a_2(t), a_3(t))` 的导数: `d/dt alpha(t) = ((da_1)/dt, (da_2)/dt, (da_3)/dt)`.
设 `lambda = lambda(t)` 是数值函数, 有:
1, 2 验证分量即可. 3 由 `(:alpha, beta:) = sum a_i b_i` 可证. 4 由行列式求导的法则可得. 5 由 3, 4 可得.
设 `f(x, y, z)` 为数量函数, `F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))` 为向量函数 (或称向量场).
梯度 `"grad" f = grad f`, 散度 `"div" F = (:grad, F:)`, 旋度 `"rot" F = grad ^^ F`.
2, 4 相当于将 `grad` 分配到 f 与 F. 5 假定混合偏导相等, 故 `| i, j, k; del/(del x), del/(del y), del/(del z); (del f)/(del x), (del f)/(del y), (del f)/(del z); | = bb"0"`. 6 同样假定混合偏导相等, 有 `| del/(del x), del/(del y), del/(del z); del/(del x), del/(del y), del/(del z); P, Q, R; | = 0`.
具有形式 `cc"T"(X) = cc"T" X + X_0`, 其中 `cc"T"` 为正交实矩阵.
设 `T` 为 `n` 阶正交阵, `t_i` 是其第 `i` 列 (行), 有 `(:t_i, t_j:) = delta_(ij)`.
在上述定理中特别取 `n = 3` 时, `t_1 ^^ t_2 = "sgn"|T| t_3`.
不妨设 `|T| = 1`,
因为 `(:t_1 ^^ t_2, t_3:) = |T| = 1`, 但
`|t_1 ^^ t_2|^2 = (:t_1 ^^ t_2, t_1 ^^ t_2:) = |
(:t_1, t_1:), (:t_1, t_2:);
(:t_2, t_1:), (:t_2, t_2:);
| = 1`,
`|t_3|^2 = (:t_3, t_3:) = 1`.
由 Cauchy 不等式知 `t_1 ^^ t_2 = t_3`.
设 `T` 为正交阵, 则 `T (alpha ^^ beta) = T alpha ^^ T beta`.
记 `t_i` 为 T 的第 i 行, 左 = `sum (:t_i, alpha ^^ beta:) = sum (:t_j ^^ t_k, alpha ^^ beta:) epsi_i` `= sum | (:t_j, alpha:), (:t_j, beta:); (:t_k, alpha:), (:t_k, beta:); | epsi_i = | i, j, k; (:alpha, t_1:), (:alpha, t_2:), (:alpha, t_3:); (:beta, t_1:), (:beta, t_2:), (:beta, t_3:); | = T alpha ^^ T beta`.